- Visibility 34 Views
- Downloads 17 Downloads
- Permissions
- DOI 10.18231/j.ijcbr.13060.1759558940
-
CrossMark
- Citation
Association of GATA4 polymorphisms with the risk of hypospadias and congenital heart defects in Indian children: A Review
Background: Congenital heart disease (CHD) and hypospadias are common developmental anomalies with both affecting approximately 1% of neonates. Emerging data suggest these conditions often co-occur, hinting at shared genetic pathways. This review evaluates the role of GATA4, a transcription factor implicated in both cardiac and urogenital development, and its polymorphisms in the joint risk of CHD and hypospadias, with a focus on evidence relevant to South Asian and Indian populations.
Materials and Methods: We conducted a comprehensive literature search (PubMed/Google Scholar) for studies on GATA4 variants, hypospadias, and CHD, including functional assays and epidemiological association studies.
Results: Several GATA4 polymorphisms—especially rs12458, rs1139244, and c.620C>T—have been associated with either hypospadias or CHD in diverse populations.
Discussion and Conclusion
A single Chinese cohort reported rs12458’s association with hypospadias (OR 1.42) [6], while rs1139244 was linked to CHD in Chinese children (OR 1.33) [8], and c.620C>T was noted in South Indian CHD cases [7]. Functional assays confirm that these variants modulate GATA4 expression or activity in vitro.GATA4 polymorphisms potentially bridge cardiac and urogenital developmental defects. Future case-control studies in Indian populations could elucidate these associations and enable targeted screening strategies.
References
- Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130(9):749-56. https://doi: 10.1161/CIRCULATIONAHA.113.008396
[Google Scholar] - Saxena A. Congenital heart disease in India: a status report. Indian J Pediatr. 2005;72:595-8. https://doi: 10.1161/CIRCULATIONAHA.113.008396
[Google Scholar] - Paulozzi LJ. International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect. 1999;107(4):297-302. https://doi:doi: 10.1289/ehp.99107297
[Google Scholar] - Leunbach TL, O'Toole S, Springer A, Williamson PR, Ahmed SF. A systematic review of core outcomes for hypospadias surgery. Sex Dev. 2020;13(4):165-70. https://doi:10.1159/000504973
[Google Scholar] - Stoll C, Dott B, Alembik Y, Roth MP. Associated noncardiac congenital anomalies among cases with congenital heart defects. Eur J Med Genet. 2015;58(2):75-85. https://doi:10.1016/j.ejmg.2014.12.002
[Google Scholar] - Laforest B, Nemer M. GATA5 interacts with GATA4 and GATA6 in outflow tract development. Dev Biol. 2011;358(2):368-78. https://doi: 10.1016/j.ydbio.2011.07.037
[Google Scholar] - Charron F, Paradis P, Bronchain O, Nemer G, Nemer M. Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol Cell Biol. 1999;19(6):4355-65. https://doi:doi:10.1128/MCB.19.6.4355
[Google Scholar] - Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11(8):1061-72. https://doi:10.1101/gad.11.8.1061
[Google Scholar] - Manuylov NL, Zhou B, Ma Q, Fox SC, Pu WT, Tevosian SG. Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian sexual differentiation. Dev Biol. 2011;353(2):229-41. https:// doi:10.1016/j.ydbio.2011.02.032
[Google Scholar] - Franco D, Garcia-Padilla C, Dominguez JN, Lozano-Velasco E, Aranega A. Cardiac Development: A Glimpse on Its Translational Contributions. Hearts. 2021;2(1):87-118. https://doi.org/10.3390/hearts2010008
[Google Scholar] - Pulignani S, Vecoli C, Sabina S, Foffa I, Ait-Ali L, Andreassi MG. 3’UTR SNPs and haplotypes in the GATA4 gene contribute to the genetic risk of congenital heart disease. Rev Esp Cardiol. 2016;69(8):760-5. https://doi:10.1016/j.rec.2016.03.004
[Google Scholar] - Wang F, Zhou S, Wang Y, Wang L, Zhou J, Wang H, Li C, Chang M. Association of DNMT1 gene polymorphisms with congenital heart disease in child patients. Pediatr Cardiol. 2015;36(5):906-11. https://doi:10.1007/s00246-015-1093-9
[Google Scholar] - Li YJ, Yang YQ. An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Rev Mol Diagn. 2017;17(4):393-401. https://doi:10.1080/14737159.2017.1300062
[Google Scholar] - Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Transl Pediatr. 2021;10(9):2366. https://doi:10.21037/tp-21-297
[Google Scholar] - Van der Zanden LF, Van Rooij IA, Feitz WF, Franke B, Knoers NV, Roeleveld N. Aetiology of hypospadias: a systematic review of genes and environment. Hum Reprod Update. 2012;18(3):260-83. . https://doi:10.1093/humupd/dms002
[Google Scholar] https://doi:10.1093/humupd/dms002
[Google Scholar] - Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z. GATA4 mutations in 486 Chinese patients with congenital heart disease. Eur J Med Genet. 2008;51(6):527-35. https://doi:10.1016/j.ejmg.2008.06.005
[Google Scholar] - Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339. https://doi:10.1093/humupd/dms002
[Google Scholar] - Chen J, Cui X, Li A, Li G, Sun F. Association of a GATA binding protein 4 polymorphism with the risk of hypospadias in the Chinese children. Urol Int. 2021;105(11-12):1018-23. https://doi:10.1093/humupd/dms002
[Google Scholar] - Fang T, Zhu Y, Xu A, Zhang Y, Wu Q, Huang G, Sheng W, Chen M. Functional analysis of the congenital heart disease-associated GATA4 H436Y mutation in vitro. Mol Med Rep. 2019;20(3):2325-
- https://doi:10.3892/mmr.2019.10481
[Google Scholar] - Gao H, Liu Y, Sheng W, Shou W, Huang G. Progresses in genetic testing in congenital heart disease. Med Plus. 2024:100028. https://doi.org/10.1016/j.medp.2024.100028
[Google Scholar] - Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, Matsuoka R. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424(6947):443-7. https://doi:10.1038/nature01827
[Google Scholar] - Abbasi S, Mohsen-Pour N, Naderi N, Rahimi S, Maleki M, Kalayinia S. In silico analysis of GATA4 variants demonstrates main contribution to congenital heart disease. J Cardiovasc Thorac Res. 2021;13(4):336.
- Wu Y, Jin X, Zhang Y, Zheng J, Yang R. Genetic and epigenetic mechanisms in the development of congenital heart diseases. World J Pediatr Surg. 2021;4(2):e000196.
- Kalayinia S, Goodarzynejad H, Maleki M, Mahdieh N. Next generation sequencing applications for cardiovascular disease. Annals of medicine. 2018;50(2):91-109.
- Mattapally S, Nizamuddin S, Murthy KS, Thangaraj K, Banerjee SK. c. 620C> T mutation in GATA4 is associated with congenital heart disease in South India. BMC medical genetics. 2015;16:1-2.
- van der Harst P, de Windt LJ, Chambers JC. Translational perspective on epigenetics in cardiovascular disease. Journal of the American College of Cardiology. 2017;70(5):590-606.
- Afouda BA. Towards understanding the gene-specific roles of GATA factors in heart development: does GATA4 lead the way?. International journal of molecular sciences. 2022;23(9):5255.
- Palmsten K, Chambers CD. Hypospadias: one defect, multiple causes, acting through shared pathways. Current Epidemiology Reports. 2015;2:13-22.
- Cecchetto A, Rampazzo A, Angelini A, Bianco LD, Padalino M, Stellin G, Daliento L. From molecular mechanisms of cardiac development to genetic substrate of congenital heart diseases. Fut Cardiol. 2010;6(3):373-93.
- Hirayama‐Yamada K, Kamisago M, Akimoto K, Aotsuka H, Nakamura Y, Tomita H, Furutani M, Imamura SI, Takao A, Nakazawa M, Matsuoka R. Phenotypes with GATA4 or NKX2. 5 mutations in familial atrial septal defect. American journal of medical genetics Part A. 2005;135(1):47-52.
- Laforest B, Nemer M. GATA5 interacts with GATA4 and GATA6 in outflow tract development. Developmental biology. 2011;358(2):368-78. https://doi:10.1016/j.ydbio.2011.07.037
[Google Scholar] - Brandt, William D. The role of Gata2 in hematopoietic and vascular development. Diss. University of Michigan, 2009.
- Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR. et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115(23):299 5-3014. https://doi:10.1161/CIRCULATIONAHA.106.183216
[Google Scholar] - Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR. et al. Contribution of rare inherited and de novo variants in 2,871 141 Aricatt et al. / International Journal of Clinical Biochemistry and Research 2025;12(3):134-141 congenital heart disease probands. Nature genetics. 2017;49(11):1593-601. https://doi:10.1038/ng.3970
[Google Scholar] - Choudhury, Talita Zahin. Mechanisms Underlying Gene- Environment Interactions in Congenital Heart Disease. Diss. The Ohio State University, 2024.
- Nawaz K, Alifah N, Hussain T, Hameed H, Ali H, Hamayun S. et al. From genes to therapy: A comprehensive exploration of congenital heart disease through the lens of genetics and emerging technologies. Curr Prob Cardiol. 2024:102726.
- Kukshal P, Joshi RO, Kumar A, Ahamad S, Murthy PR, Sathe Y. et al. Case–control association study of congenital heart disease from a tertiary paediatric cardiac centre from North India. BMC Pediatrics. 2023;23(1):290.
- Delea M, Massara LS, Espeche LD, Bidondo MP, Barbero P, Oliveri J. et al. Genetic analysis algorithm for the study of patients with multiple congenital anomalies and isolated congenital heart disease. Genes. 2022;13(7):1172.
- Li YJ, Yang YQ. An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Exp Revi Mol Diagn. 2017;17(4):393 -401. https://doi:10.1080/14737159.2017.1300062
[Google Scholar] - Mashali MA, Deschênes I, Saad NS. Transformative Potential of Induced Pluripotent Stem Cells in Congenital Heart Disease Research and Treatment. Children. 2025;12(6):669. https://doi:10.3390/children12060669
[Google Scholar] - Georgopoulos NT, Kirkwood LA, Varley CL, MacLaine NJ, Aziz N, Southgate J. Immortalisation of normal human urothelial cells compromises differentiation capacity. European urology. 2011;60(1):141-9. https://doi:10.1016/j.eururo.2011.02.022
[Google Scholar] - Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC, Hung WC. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nature genetics. 2017;49(11):1593-601.
- Zhou P, Zhang Y, Sethi I, Ye L, Trembley MA, Cao Y, Akerberg BN, Xiao F, Zhang X, Li K, Jardin BD. GATA4 regulates developing endocardium through interaction with ETS1. Circulation research. 2022;131(11):e152-68.
- Carlson WH, Kisely SR, MacLellan DL. Maternal and fetal risk factors associated with severity of hypospadias: a comparison of mild and severe cases. J Pediatric Urol. 2009;5(4):283-6. https://doi:10.1016/j.jpurol.2008.12.005
[Google Scholar] - Suluba E, Shuwei L, Xia Q, Mwanga A. Congenital heart diseases: genetics, non-inherited risk factors, and signaling pathways. Egyp J Med Hum Gen. 2020;21:1-2. https://doi:10.1186/s43042-020-0050-
[Google Scholar] 1 - Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790 -7. https://doi:10.1101/gr.137323.112
[Google Scholar] - Kircher M, Witten DM, Jain P, O'roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Gen. 2014;46(3):310-5. https://doi:10.1038/ng.2892
[Google Scholar] - Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Trans Pediat. 2021;10(9):2366. https://doi:10.21037/tp-21-297
[Google Scholar] - Simón C, Rubio C. Handbook of Genetic Diagnostic Technologies in Reproductive Medicine. Taylo Francis. 2022;
- Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, Karapetyan K. ClinVar: improving access to variant interpretations and supporting evidence. Nuc Acid Res. 2018;46(D1):D1062-7.
- Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Gen. 2009;84(4):524-33.
- Selot R, Ghosh A. Recent developments in gene therapy research in India. J Biosci. 2024;49(1):3.
How to Cite This Article
Vancouver
Aricatt DP, Samapriya N, M.S. S. Association of GATA4 polymorphisms with the risk of hypospadias and congenital heart defects in Indian children: A Review [Internet]. Int J Clin Biochem Res. 2025 [cited 2025 Oct 26];12(3):134-141. Available from: https://doi.org/10.18231/j.ijcbr.13060.1759558940
APA
Aricatt, D. P., Samapriya, N., M.S., S. (2025). Association of GATA4 polymorphisms with the risk of hypospadias and congenital heart defects in Indian children: A Review. Int J Clin Biochem Res, 12(3), 134-141. https://doi.org/10.18231/j.ijcbr.13060.1759558940
MLA
Aricatt, Divia Paul, Samapriya, Neha, M.S., Somesh. "Association of GATA4 polymorphisms with the risk of hypospadias and congenital heart defects in Indian children: A Review." Int J Clin Biochem Res, vol. 12, no. 3, 2025, pp. 134-141. https://doi.org/10.18231/j.ijcbr.13060.1759558940
Chicago
Aricatt, D. P., Samapriya, N., M.S., S.. "Association of GATA4 polymorphisms with the risk of hypospadias and congenital heart defects in Indian children: A Review." Int J Clin Biochem Res 12, no. 3 (2025): 134-141. https://doi.org/10.18231/j.ijcbr.13060.1759558940